summit.multiview_platform package
Subpackages
- summit.multiview_platform.metrics package
- Submodules
- summit.multiview_platform.metrics.accuracy_score module
- summit.multiview_platform.metrics.f1_score module
- summit.multiview_platform.metrics.fbeta_score module
- summit.multiview_platform.metrics.hamming_loss module
- summit.multiview_platform.metrics.jaccard_score module
- summit.multiview_platform.metrics.log_loss module
- summit.multiview_platform.metrics.matthews_corrcoef module
- summit.multiview_platform.metrics.precision_score module
- summit.multiview_platform.metrics.recall_score module
- summit.multiview_platform.metrics.roc_auc_score module
- summit.multiview_platform.metrics.zero_one_loss module
- Module contents
- summit.multiview_platform.monoview package
- Submodules
- summit.multiview_platform.monoview.exec_classif_mono_view module
- summit.multiview_platform.monoview.monoview_utils module
- Module contents
- summit.multiview_platform.monoview_classifiers package
- Subpackages
- Submodules
- summit.multiview_platform.monoview_classifiers.adaboost module
- summit.multiview_platform.monoview_classifiers.decision_tree module
- summit.multiview_platform.monoview_classifiers.gradient_boosting module
- summit.multiview_platform.monoview_classifiers.imbalance_bagging module
- summit.multiview_platform.monoview_classifiers.knn module
- summit.multiview_platform.monoview_classifiers.lasso module
- summit.multiview_platform.monoview_classifiers.random_forest module
- summit.multiview_platform.monoview_classifiers.random_scm module
- summit.multiview_platform.monoview_classifiers.scm module
- summit.multiview_platform.monoview_classifiers.sgd module
- summit.multiview_platform.monoview_classifiers.svm_linear module
- summit.multiview_platform.monoview_classifiers.svm_poly module
- summit.multiview_platform.monoview_classifiers.svm_rbf module
- Module contents
- summit.multiview_platform.multiview package
- summit.multiview_platform.multiview_classifiers package
- Subpackages
- summit.multiview_platform.multiview_classifiers.additions package
- Submodules
- summit.multiview_platform.multiview_classifiers.additions.diversity_utils module
- summit.multiview_platform.multiview_classifiers.additions.early_fusion_from_monoview module
- summit.multiview_platform.multiview_classifiers.additions.fusion_utils module
- summit.multiview_platform.multiview_classifiers.additions.jumbo_fusion_utils module
- summit.multiview_platform.multiview_classifiers.additions.kernel_learning module
- summit.multiview_platform.multiview_classifiers.additions.late_fusion_utils module
- summit.multiview_platform.multiview_classifiers.additions.utils module
- Module contents
- summit.multiview_platform.multiview_classifiers.additions package
- Submodules
- summit.multiview_platform.multiview_classifiers.bayesian_inference_fusion module
- summit.multiview_platform.multiview_classifiers.difficulty_fusion module
- summit.multiview_platform.multiview_classifiers.disagree_fusion module
- summit.multiview_platform.multiview_classifiers.double_fault_fusion module
- summit.multiview_platform.multiview_classifiers.early_fusion_adaboost module
- summit.multiview_platform.multiview_classifiers.early_fusion_decision_tree module
- summit.multiview_platform.multiview_classifiers.early_fusion_gradient_boosting module
- summit.multiview_platform.multiview_classifiers.early_fusion_lasso module
- summit.multiview_platform.multiview_classifiers.early_fusion_random_forest module
- summit.multiview_platform.multiview_classifiers.early_fusion_sgd module
- summit.multiview_platform.multiview_classifiers.early_fusion_svm_rbf module
- summit.multiview_platform.multiview_classifiers.entropy_fusion module
- summit.multiview_platform.multiview_classifiers.lp_norm_mkl module
- summit.multiview_platform.multiview_classifiers.majority_voting_fusion module
- summit.multiview_platform.multiview_classifiers.mucombo module
- summit.multiview_platform.multiview_classifiers.mumbo module
- summit.multiview_platform.multiview_classifiers.mvml module
- summit.multiview_platform.multiview_classifiers.svm_jumbo_fusion module
- summit.multiview_platform.multiview_classifiers.weighted_linear_early_fusion module
WeightedLinearEarlyFusion
WeightedLinearEarlyFusion.fit()
WeightedLinearEarlyFusion.get_params()
WeightedLinearEarlyFusion.hdf5_to_monoview()
WeightedLinearEarlyFusion.predict()
WeightedLinearEarlyFusion.set_fit_request()
WeightedLinearEarlyFusion.set_params()
WeightedLinearEarlyFusion.set_predict_request()
WeightedLinearEarlyFusion.transform_data_to_monoview()
- summit.multiview_platform.multiview_classifiers.weighted_linear_late_fusion module
- Module contents
- Subpackages
- summit.multiview_platform.result_analysis package
- Submodules
- summit.multiview_platform.result_analysis.duration_analysis module
- summit.multiview_platform.result_analysis.error_analysis module
- summit.multiview_platform.result_analysis.execution module
- summit.multiview_platform.result_analysis.feature_importances module
- summit.multiview_platform.result_analysis.metric_analysis module
- summit.multiview_platform.result_analysis.noise_analysis module
- summit.multiview_platform.result_analysis.tracebacks_analysis module
- Module contents
- summit.multiview_platform.utils package
- Submodules
- summit.multiview_platform.utils.base module
- summit.multiview_platform.utils.configuration module
- summit.multiview_platform.utils.dataset module
Dataset
HDF5Dataset
HDF5Dataset.dataset
HDF5Dataset.nb_view
HDF5Dataset.view_dict
HDF5Dataset.add_gaussian_noise()
HDF5Dataset.copy_view()
HDF5Dataset.filter()
HDF5Dataset.get_label_names()
HDF5Dataset.get_labels()
HDF5Dataset.get_name()
HDF5Dataset.get_nb_class()
HDF5Dataset.get_nb_samples()
HDF5Dataset.get_v()
HDF5Dataset.get_view_dict()
HDF5Dataset.get_view_name()
HDF5Dataset.init_attrs()
HDF5Dataset.init_view_names()
HDF5Dataset.rm()
HDF5Dataset.update_hdf5_dataset()
RAMDataset
confirm()
copy_hdf5()
datasets_already_exist()
delete_HDF5()
extract_subset()
get_samples_views_indices()
init_multiple_datasets()
input_()
is_just_number()
- summit.multiview_platform.utils.execution module
- summit.multiview_platform.utils.get_multiview_db module
- summit.multiview_platform.utils.hyper_parameter_search module
- summit.multiview_platform.utils.make_file_config module
- summit.multiview_platform.utils.multiclass module
MonoviewWrapper
MultiClassWrapper
MultiviewOVOWrapper
MultiviewOVOWrapper.fit()
MultiviewOVOWrapper.get_params()
MultiviewOVOWrapper.get_tags()
MultiviewOVOWrapper.multiview_decision_function()
MultiviewOVOWrapper.predict()
MultiviewOVOWrapper.set_fit_request()
MultiviewOVOWrapper.set_partial_fit_request()
MultiviewOVOWrapper.set_predict_request()
MultiviewOVOWrapper.set_score_request()
MultiviewOVRWrapper
MultiviewWrapper
OVOWrapper
OVRWrapper
get_mc_estim()
- summit.multiview_platform.utils.multiview_result_analysis module
- summit.multiview_platform.utils.organization module
- summit.multiview_platform.utils.transformations module
- Module contents
Submodules
summit.multiview_platform.exec_classif module
- arange_metrics(metrics, metric_princ)
Used to get the metrics list in the right order so that the first one is the principal metric specified in args
- Parameters:
metrics (dict) – The metrics that will be used in the benchmark
metric_princ (str) – The name of the metric that need to be used for the hyper-parameter optimization process
- Returns:
metrics – The metrics list, but arranged so the first one is the principal one.
- Return type:
list of lists
- benchmark_init(directory, classification_indices, labels, labels_dictionary, k_folds, dataset_var)
Initializes the benchmark, by saving the indices of the train samples and the cross validation folds.
- Parameters:
directory (str) – The benchmark’s result directory
classification_indices (numpy array) – The indices of the samples, splitted for the train/test split
labels (numpy array) – The labels of the dataset
labels_dictionary (dict) – The dictionary with labels as keys and their names as values
k_folds (sklearn.model_selection.Folds object) – The folds for the cross validation process
- exec_benchmark(nb_cores, stats_iter, benchmark_arguments_dictionaries, directory, metrics, dataset_var, track_tracebacks, exec_one_benchmark_mono_core=<function exec_one_benchmark_mono_core>, analyze=<function analyze>, delete=<function delete_HDF5>, analyze_iterations=<function analyze_iterations>)
Used to execute the needed benchmark(s) on multicore or mono-core functions.
- Parameters:
nb_cores (int) – Number of threads that the benchmarks can use.
stats_iter (int) – Number of statistical iterations that have to be done.
benchmark_arguments_dictionaries (list of dictionaries) – All the needed arguments for the benchmarks.
classification_indices (list of lists of numpy.ndarray) – For each statistical iteration a couple of numpy.ndarrays is stored with the indices for the training set and the ones of the testing set.
directories (list of strings) – List of the paths to the result directories for each statistical iteration.
directory (string) – Path to the main results directory.
multi_class_labels (ist of lists of numpy.ndarray) – For each label couple, for each statistical iteration a triplet of numpy.ndarrays is stored with the indices for the biclass training set, the ones for the biclass testing set and the ones for the multiclass testing set.
metrics (list of lists) – metrics that will be used to evaluate the algorithms performance.
labels_dictionary (dictionary) – Dictionary mapping labels indices to labels names.
nb_labels (int) – Total number of different labels in the dataset.
dataset_var (HDF5 dataset file) – The full dataset that wil be used by the benchmark.
classifiers_names (list of strings) – List of the benchmarks’s monoview classifiers names.
rest_of_the_args – Just used for testing purposes
- Returns:
results – The results of the benchmark.
- Return type:
list of lists
- exec_classif(arguments)
Runs the benchmark with the given arguments
- Parameters:
arguments
- Returns:
>>> exec_classif([–config_path, /path/to/config/files/])
>>>
- exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, directory=None, classification_indices=None, args=None, k_folds=None, random_state=None, hyper_param_search=None, metrics=None, argument_dictionaries=None, benchmark=None, views=None, views_indices=None, flag=None, labels=None, track_tracebacks=False, nb_cores=1)
- extract_dict(classifier_config)
Reverse function of get_path_dict
- gen_single_monoview_arg_dictionary(classifier_name, arguments, nb_class, view_index, view_name, hps_kwargs)
- gen_single_multiview_arg_dictionary(classifier_name, arguments, nb_class, hps_kwargs, views_dictionary=None)
- get_path_dict(multiview_classifier_args)
This function is used to generate a dictionary with each key being the path to the value. If given {“key1”:{“key1_1”:value1}, “key2”:value2}, it will return {“key1.key1_1”:value1, “key2”:value2}
- get_random_hps_args(hps_args, classifier_name)
- init_argument_dictionaries(benchmark, views_dictionary, nb_class, init_kwargs, hps_method, hps_kwargs)
- init_benchmark(cl_type, monoview_algos, multiview_algos)
Used to create a list of all the algorithm packages names used for the benchmark.
First this function will check if the benchmark need mono- or/and multiview algorithms and adds to the right dictionary the asked algorithms. If none is asked by the user, all will be added.
If the keyword “Benchmark” is used, all mono- and multiview algorithms will be added.
- Parameters:
cl_type (List of string) – List of types of needed benchmark
multiview_algos (List of strings) – List of multiview algorithms needed for the benchmark
monoview_algos (Listof strings) – List of monoview algorithms needed for the benchmark
args (ParsedArgumentParser args) – All the input args (used to tune the algorithms)
- Returns:
benchmark – Dictionary resuming which mono- and multiview algorithms which will be used in the benchmark.
- Return type:
Dictionary of dictionaries
- init_kwargs(args, classifiers_names, framework='monoview')
Used to init kwargs thanks to a function in each monoview classifier package.
- Parameters:
args (parsed args objects) – All the args passed by the user.
classifiers_names (list of strings) – List of the benchmarks’s monoview classifiers names.
- Returns:
kwargs – Dictionary resuming all the specific arguments for the benchmark, one dictionary for each classifier.
For example, for Adaboost, the KWARGS will be {“n_estimators”:<value>, “base_estimator”:<value>}
- Return type:
Dictionary
- init_kwargs_func(args, benchmark)
Dispached the kwargs initialization to monoview and multiview and creates the kwargs variable
- Parameters:
args (parsed args objects) – All the args passed by the user.
benchmark (dict) – The name of the mono- and mutli-view classifiers to run in the benchmark
- Returns:
kwargs – The arguments for each mono- and multiview algorithms
- Return type:
dict
- init_monoview_exps(classifier_names, views_dictionary, nb_class, kwargs_init, hps_method, hps_kwargs)
Used to add each monoview exeperience args to the list of monoview experiences args.
First this function will check if the benchmark need mono- or/and multiview algorithms and adds to the right dictionary the asked algorithms. If none is asked by the user, all will be added.
If the keyword “Benchmark” is used, all mono- and multiview algorithms will be added.
- Parameters:
classifier_names (dictionary) – All types of monoview and multiview experiments that have to be benchmarked
argument_dictionaries (dictionary) – Maps monoview and multiview experiments arguments.
views_dictionary (dictionary) – Maps the view names to their index in the HDF5 dataset
nb_class (integer) – Number of different labels in the classification
- Returns:
benchmark – Dictionary resuming which mono- and multiview algorithms which will be used in the benchmark.
- Return type:
Dictionary of dictionaries
- init_multiview_exps(classifier_names, views_dictionary, nb_class, kwargs_init, hps_method, hps_kwargs)
- is_dict_in(dictionary)
Returns True if any of the dictionary value is a dictionary itself.
- Parameters:
dictionary
- set_element(dictionary, path, value)
Set value in dictionary at the location indicated by path