summit.multiview_platform.multiview package
Submodules
summit.multiview_platform.multiview.exec_multiview module
- exec_multiview(directory, dataset_var, name, classification_indices, k_folds, nb_cores, database_type, path, labels_dictionary, random_state, labels, hps_method='None', hps_kwargs={}, metrics=None, n_iter=30, **kwargs)
Used to execute multiview classification and result analysis
- Parameters:
directory (indicate the directory)
dataset_var :
name
classification_indices
k_folds
nb_cores
database_type
path
labels_dictionary : dict dictionary of labels
- random_stateint seed, RandomState instance, or None (default=None)
The seed of the pseudo random number multiview_generator to use when shuffling the data.
labels
hps_method
metrics
n_iter : int number of iterations
kwargs
- Return type:
MultiviewResult
- exec_multiview_multicore(directory, core_index, name, learning_rate, nb_folds, database_type, path, labels_dictionary, random_state, labels, hyper_param_search=False, nb_cores=1, metrics=None, n_iter=30, **arguments)
execute multiview process on
- Parameters:
directory (indicate the directory)
core_index
name (name of the data file to perform)
learning_rate
nb_folds
database_type
path (path to the data name)
labels_dictionary
random_state (int seed, RandomState instance, or None (default=None)) – The seed of the pseudo random number multiview_generator to use when shuffling the data.
labels
hyper_param_search
nb_cores (in number of cores)
metrics (metric to use)
n_iter (int number of iterations)
arguments (others arguments)
- Returns:
database_type, path, labels_dictionary, random_state, labels, hyper_param_search=hyper_param_search, metrics=metrics, n_iter=n_iter, **arguments
- Return type:
exec_multiview on directory, dataset_var, name, learning_rate, nb_folds, 1,
- init_constants(kwargs, classification_indices, metrics, name, nb_cores, k_folds, dataset_var, directory)
Used to init the constants :param kwargs: :param classification_indices: :param metrics: :param name: :param nb_cores: :type nb_cores: nint number of cares to execute :param k_folds: :param dataset_var: dataset variable :type dataset_var: {array-like} shape (n_samples, n_features)
- Returns:
classifier_config, views, learning_rate)
- Return type:
tuple of (classifier_name, t_start, views_indices,
- save_results(string_analysis, images_analysis, output_file_name, confusion_matrix)
Save results in derectory
- Parameters:
classifier (classifier class)
labels_dictionary (dict dictionary of labels)
string_analysis (str)
views
classifier_module (module of the classifier)
classification_kargs
directory (str directory)
learning_rate
name
images_analysis
summit.multiview_platform.multiview.multiview_utils module
- class BaseMultiviewClassifier(random_state)
Bases:
BaseClassifier
BaseMultiviewClassifier base of Multiview classifiers
- Parameters:
random_state (int seed, RandomState instance, or None (default=None)) – The seed of the pseudo random number multiview_generator to use when shuffling the data.
- accepts_multi_class(random_state, n_samples=10, dim=2, n_classes=3, n_views=2)
Base function to test if the classifier accepts a multiclass task. It is highly recommended to overwrite it with a simple method that returns True or False in the classifier’s module, as it will speed up the benchmark
- abstractmethod fit(X, y, train_indices=None, view_indices=None)
- abstractmethod predict(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseMultiviewClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseMultiviewClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- class MultiviewResult(classifier_name, classifier_config, metrics_scores, full_labels, hps_duration, fit_duration, pred_duration, class_metric_scores, clf)
Bases:
object
- get_classifier_name()
- class MultiviewResultAnalyzer(view_names, classifier, classification_indices, k_folds, hps_method, metrics_dict, n_iter, class_label_names, pred, directory, base_file_name, labels, database_name, nb_cores, duration, feature_ids)
Bases:
ResultAnalyser
- get_base_string()
- get_view_specific_info()
- get_available_monoview_classifiers(need_probas=False)
- get_monoview_classifier(classifier_name, multiclass=False)