summit.multiview_platform.multiview_classifiers.additions package
Submodules
summit.multiview_platform.multiview_classifiers.additions.diversity_utils module
- class CoupleDiversityFusionClassifier(random_state=None, classifier_names=None, monoview_estimators=None, classifier_configs=None)
Bases:
DiversityFusionClassifier
- choose_combination(X, y, samples_indices, view_indices)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') CoupleDiversityFusionClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') CoupleDiversityFusionClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- class DiversityFusionClassifier(random_state=None, classifier_names=None, monoview_estimators=None, classifier_configs=None)
Bases:
BaseMultiviewClassifier
,BaseFusionClassifier
This is the base class for all the diversity fusion based classifiers.
- fit(X, y, train_indices=None, view_indices=None)
- get_classifiers_decisions(X, view_indices, samples_indices)
- init_combinations(X, sample_indices, view_indices)
- predict(X, sample_indices=None, view_indices=None)
Just a weighted majority vote
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') DiversityFusionClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') DiversityFusionClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- class GlobalDiversityFusionClassifier(random_state=None, classifier_names=None, monoview_estimators=None, classifier_configs=None)
Bases:
DiversityFusionClassifier
- choose_combination(X, y, samples_indices, view_indices)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') GlobalDiversityFusionClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') GlobalDiversityFusionClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
summit.multiview_platform.multiview_classifiers.additions.early_fusion_from_monoview module
- class BaseEarlyFusion(monoview_classifier='decision_tree', random_state=None, **kwargs)
Bases:
BaseMultiviewClassifier
- fit(X, y, train_indices=None, view_indices=None)
- get_feature_importances()
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- hdf5_to_monoview(dataset, samples)
Here, we concatenate the views for the asked samples
- predict(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseEarlyFusion
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseEarlyFusion
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- transform_data_to_monoview(dataset, sample_indices)
Here, we extract the data from the HDF5 dataset file and store all the concatenated views in one variable
summit.multiview_platform.multiview_classifiers.additions.fusion_utils module
summit.multiview_platform.multiview_classifiers.additions.jumbo_fusion_utils module
- class BaseJumboFusion(random_state, classifiers_names=None, classifier_configs=None, nb_cores=1, weights=None, nb_monoview_per_view=1, rs=None)
Bases:
LateFusionClassifier
- fit(X, y, train_indices=None, view_indices=None)
- fit_monoview_estimators(X, y, train_indices=None, view_indices=None)
- predict(X, sample_indices=None, view_indices=None)
- predict_monoview(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseJumboFusion
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_params(nb_monoview_per_view=1, **params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') BaseJumboFusion
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
summit.multiview_platform.multiview_classifiers.additions.kernel_learning module
- class KernelClassifier(random_state=None)
Bases:
BaseMultiviewClassifier
- extract_labels(predicted_labels)
- format_X(X, sample_indices, view_indices)
- init_kernels(nb_view=2)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') KernelClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') KernelClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
summit.multiview_platform.multiview_classifiers.additions.late_fusion_utils module
- class ClassifierDistribution(seed=42, available_classifiers=None)
Bases:
object
- draw(nb_view, rs=None)
- class ConfigDistribution(seed=42, available_classifiers=None)
Bases:
object
- draw(nb_view, rs=None)
- class LateFusionClassifier(random_state=None, classifiers_names=None, classifier_configs=None, nb_cores=1, weights=None, rs=None)
Bases:
BaseMultiviewClassifier
,BaseFusionClassifier
- fit(X, y, train_indices=None, view_indices=None)
- get_classifiers(classifiers_names, nb_choices)
- init_classifiers(nb_view, nb_monoview_per_view=None)
- init_params(nb_view, mutliclass=False)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') LateFusionClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') LateFusionClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
summit.multiview_platform.multiview_classifiers.additions.utils module
- get_names(classed_list)