summit.tests.test_utils package
Submodules
summit.tests.test_utils.test_GetMultiviewDB module
- class Test_get_classic_db_csv(methodName='runTest')
Bases:
TestCase
- setUp()
Hook method for setting up the test fixture before exercising it.
- classmethod tearDown()
Hook method for deconstructing the test fixture after testing it.
- test_simple()
- class Test_get_classic_db_hdf5(methodName='runTest')
Bases:
TestCase
- setUp()
Hook method for setting up the test fixture before exercising it.
- tearDown()
Hook method for deconstructing the test fixture after testing it.
- test_all_views_asked()
- test_asked_the_whole_dataset()
- test_simple()
- class Test_get_plausible_db_hdf5(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_simple()
- test_two_class()
summit.tests.test_utils.test_base module
- class FakeClassifier(no_params=False, accepts_mc=True)
Bases:
BaseClassifier
- fit(X, y)
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- class FakeDetector
Bases:
object
- class FakeResultAnalyzer(classifier, classification_indices, k_folds, hps_method, metrics_dict, n_iter, class_label_names, pred, directory, base_file_name, labels, database_name, nb_cores, duration, feature_ids)
Bases:
ResultAnalyser
- get_base_string()
- get_view_specific_info()
- class Test_BaseClassifier(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_accepts_mutliclass()
- test_class()
- test_gen_best_params()
- test_gen_params_from_detector()
- test_get_config()
- test_get_iterpret()
- test_params_to_string()
- test_simple()
- test_wrong_args()
- class Test_ResultAnalyzer(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_analyze()
- test_get_all_metrics_scores()
- test_get_classifier_config_string()
- test_get_db_config_string()
- test_get_metric_scores()
- test_print_metrics_scores()
- test_simple()
summit.tests.test_utils.test_configuration module
- class Test_get_the_args(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_arguments()
- test_dict_format()
- test_file_loading()
summit.tests.test_utils.test_dataset module
- class TestRAMDataset(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_filter()
- test_get_label_names()
- test_get_name()
- test_get_v()
- test_get_view_dict()
- test_get_view_name()
- test_init_attrs()
- class Test_Dataset(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_add_gaussian_noise()
- test_check_selected_label_names()
- test_copy_view()
- test_filter()
Had to create a new dataset to aviod playing with the class one
- test_for_hdf5_file()
- test_from_scratch()
- test_get_label_names()
- test_get_labels()
- test_get_name()
- test_get_nb_class()
- test_get_nb_exmaples()
- test_get_shape()
- test_get_v()
- test_get_view_dict()
- test_init_sample_indices()
- test_select_labels()
- test_select_views_and_labels()
- test_to_numpy_array()
- class Test_Functions(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_datasets_already_exist()
- test_init_multiple_datasets()
summit.tests.test_utils.test_execution module
- class FakeArg
Bases:
object
- class Test_find_dataset_names(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_simple()
- class Test_genArgumentDictionaries(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- class Test_genDirecortiesNames(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_ovo_no_iter()
- test_simple_ovo()
- class Test_genKFolds(methodName='runTest')
Bases:
TestCase
- setUp()
Hook method for setting up the test fixture before exercising it.
- test_genKFolds_iter()
- class Test_genSplits(methodName='runTest')
Bases:
TestCase
- setUp()
Hook method for setting up the test fixture before exercising it.
- test_genSplits_no_iter()
- test_simple()
- class Test_gen_k_folds(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_list_rs()
- test_multple_iters()
- test_simple()
- class Test_getDatabaseFunction(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_hdf5()
- test_plausible_hdf5()
- test_simple()
- class Test_initRandomState(methodName='runTest')
Bases:
TestCase
- setUp()
Hook method for setting up the test fixture before exercising it.
- tearDown()
Hook method for deconstructing the test fixture after testing it.
- test_random_state_42()
- test_random_state_pickle()
- class Test_initStatsIterRandomStates(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_multiple_iter()
- test_one_statiter()
- class Test_init_log_file(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.
- test_debug()
- test_no_log()
- test_simple()
summit.tests.test_utils.test_hyper_parameter_search module
- class FakeEstim(param1=None, param2=None, random_state=None)
Bases:
BaseEstimator
- accepts_multi_class(rs)
- fit(X, y)
- gen_distribs()
- predict(X)
- class FakeEstimMV(param1=None, param2=None)
Bases:
BaseEstimator
- fit(X, y, train_indices=None, view_indices=None)
- gen_distribs()
- predict(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeEstimMV
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeEstimMV
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
summit.tests.test_utils.test_multiclass module
- class FakeEstimNative
Bases:
FakeMCEstim
- accepts_multi_class(random_state)
- class FakeMVClassifier(short_name='None')
Bases:
BaseEstimator
- fit(X, y, train_indices=None, view_indices=None)
- predict(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeMVClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeMVClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- class FakeMVClassifierProb(short_name='None')
Bases:
FakeMVClassifier
- predict_proba(X, sample_indices=None, view_indices=None)
- set_fit_request(*, train_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeMVClassifierProb
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
train_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
train_indices
parameter infit
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_proba_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeMVClassifierProb
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict_proba
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict_proba
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, sample_indices: bool | None | str = '$UNCHANGED$', view_indices: bool | None | str = '$UNCHANGED$') FakeMVClassifierProb
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_indices
parameter inpredict
.view_indices (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
view_indices
parameter inpredict
.
- Returns:
self – The updated object.
- Return type:
object
- class FakeNonProbaEstim
Bases:
FakeMCEstim
- class FakeProbaEstim
Bases:
FakeMCEstim
- predict_proba()
- class Test_MultiviewOVOWrapper_fit(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_fit()
- test_predict()
- class Test_MultiviewOVRWrapper_fit(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_fit()
- test_predict()
- class Test_get_mc_estim(methodName='runTest')
Bases:
TestCase
- classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.
- test_biclass()
- test_multiclass_native()
- test_multiclass_ovo()
- test_multiclass_ovo_multiview()
- test_multiclass_ovr()
- test_multiclass_ovr_multiview()