summit.multiview_platform.monoview_classifiers.adaboost

adaboost

classifier_class_name = 'Adaboost'
class Adaboost(random_state=None, n_estimators=50, estimator=None, estimator_config=None, **kwargs)

This class is an adaptation of scikit-learn’s AdaBoostClassifier

param_names = ['n_estimators', 'estimator']
classed_params = ['estimator']
distribs
weird_strings
plotted_metric
plotted_metric_name = 'zero_one_loss'
step_predictions = None
estimator_config = None
fit(X, y, sample_weight=None)

Build a boosted classifier/regressor from the training set (X, y).

Parameters:
  • X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.

  • y (array-like of shape (n_samples,)) – The target values.

  • sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns:

self – Fitted estimator.

Return type:

object

predict(X)

Predict classes for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble.

Parameters:

X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.

Returns:

y – The predicted classes.

Return type:

ndarray of shape (n_samples,)

get_interpretation(directory, base_file_name, y_test, feature_ids, multi_class=False)

Base method that returns an empty string if there is not interpretation method in the classifier’s module