summit.multiview_platform.monoview_classifiers.adaboost


adaboost

classifier_class_name = Adaboost
class Adaboost(random_state=None, n_estimators=50, base_estimator=None, base_estimator_config=None, **kwargs)

This class is an adaptation of scikit-learn’s AdaBoostClassifier

fit(self, X, y, sample_weight=None)

Build a boosted classifier from the training set (X, y).

Parameters
  • X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.

  • y (array-like of shape (n_samples,)) – The target values (class labels).

  • sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns

self – Fitted estimator.

Return type

object

predict(self, X)

Predict classes for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble.

Parameters

X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.

Returns

y – The predicted classes.

Return type

ndarray of shape (n_samples,)

get_interpretation(self, directory, base_file_name, y_test, feature_ids, multi_class=False)

Base method that returns an empty string if there is not interpretation method in the classifier’s module