multiview_generator.sub_problems
sub_problems
- class BaseSubProblem(n_classes=2, n_features=2, random_vertices=True, errors=np.array([0.5, 0.5]), random_state=np.random.RandomState(42), n_samples_per_class=np.array([100, 100]), **configuration)
The base class for all the sub-problem generators.
- n_classes = 2
- random_vertices = True
- errors
- n_features = 2
- rs
- n_samples_per_class
- bayes_error
- descriptions
- config
- view_name = 'generated'
- gen_report()
General method the generate the report on the view.
- Returns:
A string containing the general report for the view
- class StumpsGenerator(n_classes=2, n_features=2, random_vertices=True, errors=np.array([0.5, 0.5]), random_state=np.random.RandomState(42), n_samples_per_class=np.array([100, 100]), **configuration)
The base class for all the sub-problem generators.
- gen_data()
Generates the samples according to gaussian distributions with scales computed with the given error and class separation. This sub-problem is easily understandable by a decision tree.
The features are built as : relevant_features : the math.ceil(math.log2(self.n_classes)) first ones, uniform noise features : all the remaining ones
- Returns:
data a np.ndarray of dimension n_classes, n_samples_per_class, n_features containing the samples’ descriptions, sorted by class
- gen_report()
Generates the specific report for StumpsGenerator.
- get_bayes_classifier()
- class TreesGenerator(n_classes=2, n_features=2, random_vertices=True, errors=np.array([0.5, 0.5]), random_state=np.random.RandomState(42), n_samples_per_class=np.array([100, 100]), **configuration)
Work in progress : Similar generator as StumpsGenerator, but that generates several blobs per class
- gen_data()
WIP
- gen_report()
WIP
- get_bayes_classifier()
- class RingsGenerator(n_classes=2, n_features=2, random_vertices=True, errors=np.array([0.5, 0.5]), random_state=np.random.RandomState(42), n_samples_per_class=np.array([100, 100]), **configuration)
The base class for all the sub-problem generators.
- gen_data()
Generates the samples according to gaussian distributions with scales computed with the given error and class separation. The generator first computes a radius according to the gaussian distribution, then generates n_features-1 random angles to build the polar coordinates of the samples. The dataset returned is the cartesian version of this “polar” dataset.
- Returns:
data a np.ndarray of dimension n_classes, n_samples_per_class, n_features containing the samples’ descriptions, sorted by class
- gen_report()
Generates the specific report for StumpsGenerator.
- get_bayes_classifier()
- to_cartesian(radius, angles)
Transforms polar coordinates to cartesian coordinates.